Computer Networks 2012/2013

Introduction part 1 (01)

Dr. Tanir Ozcelebi

Thanks to A. Leon-Garcia \& I. Widjaja,
\& I. Radovanovic \& A. S. Tanenbaum

System Architecture
and Networking Group

Outline

- What is the Internet?
- Why / How do networks evolve?
- Network Structure
- Network edge: Hosts (servers \& clients)
- Access networks
- Network core
- Performance: loss, delay, throughput
- Protocol layers, service models

What is a network?

- An interconnected configuration of system components
- designed to communicate and share
- A connected system of things or people - e.g. a network of gossip or spies

What is a computer network?

Physically:
An "infrastructure" interconnecting "end-devices"

- End-devices
- PC's, workstations, PDA's, TV's, cell phones...
- Network Interface Cards (NIC) and OS are included
- Infrastructure
- Communication links (e.g. fiber cable, radio)
- Packet switches (e.g. routers, link layer switches)

Logically:
A facility providing information exchange between applications that are not sharing memory

What is the Internet?

Physically:

- A public network of computer networks
- millions of end-devices, networks...

Logically:

- A network infrastructure that provides services to distributed applications
- e.g. e-mail, world-wide web (www), instant messaging, online games, VolP, TV etc.
- A means for data/message delivery from a source device to a destination device
- uses certain protocols to achieve this

Mobile network

Outline

- What is the Internet?
- Why / How do networks evolve?
- Network Structure
- Network edge: Hosts (servers \& clients)
- Access networks
- Network core
- Performance: loss, delay, throughput
- Protocol layers, service models

Network development: The push

There are several reasons for computer networks to evolve and to be widespread.

- Technology push
- Industry push
- Economy (huge economy...)
- Social push

Technology advance: Communication networks

Data rate growth over years

Better processors

Moore's Law: Number of transistors integrated into a processor doubles every 2 years.

Industry

Internet Domain Survey Host Count

Source: Internet Systems Consortium (www.isc.org]

Economy

- E-commerce: e-banking, ticket reservation, shopping etc.
- Dutch e-commerce: "Nearly 70\% of the Dutch population shops online and 10% of all purchases in the Netherlands are now made online, with iDEAL being the favourite payment method."
(from E-commerce Europe Report: Online Payments 2012).

Social aspects

- Social networks
- Entertainment
- Better/cheaper communication (IM etc.)
- E-learning
- Working from home
- Second life
- ...

The Evolution: How?

- So the motivation is clear from many perspectives.
- But, the question remains:
- How do communication networks evolve?
-What are the key factors?

Key factors in communication network evolution

Role of technology and market

- Technology

- should not only be available but also be cost-effective
- Market
- Trends and hypes
- Trying to push technology has consequences! Look at WAP, MMS etc.

Role of standards

- Equipment interoperability between different vendors
- Network value depends on the size of community it can reach (Metcalfe's Law!)
- more suppliers \rightarrow competition \rightarrow lower price \rightarrow bigger community
- Standardization bodies:
- International Telecommunication Union (ITU)
- Internet Engineering Task Force (IETF)
- Institute of Electrical and Electronics Engineers (IEEE)

Role of regulations

- Governmental regulation for industry protection
- e.g. copyright issues
- Censorship
- e.g. some governments
- Open market competition
- No monopoly
- Local regulations (e.g. institution/company regulations)
- e.g. some organizations block access to social network sites, using BitTorrent, excessive download/upload etc.

Outline

- What is the Internet?
- Why / How do networks evolve?
- Network Structure
- Network edge: Hosts (servers \& clients)
- Access networks
- Network core
- Performance: loss, delay, throughput
- Protocol layers, service models

Network structure

- network edge:
- hosts and applications that run on them
- access networks, physical media:
- wired, wireless communication links
- network core:
- interconnected routers

Network edge

End systems (hosts):

- run applications at "edge of network"
- e.g. Web, email
client/server model
client host requests, receives service from always-on server, e.g. Web browser/server; e-mail client/server
peer-peer
client/server model
client host requests, receives service
from always-on server, e.g. Web
browser/server; e-mail client/server

```
peer-to-peer model:
minimal (or no) use of dedicated
servers, e.g. Skype, BitTorrent
```


Access networks

An access network connects end devices to a router

- residential access networks
- institutional access networks (school, company)
- mobile access networks

Network core

- Interconnected routers
- Fundamental question: How is data transferred from edge to edge?
- circuit switching
- packet-switching

Circuit switching

Provides:

- dedicated circuit per call/session
- resources dedicated for the call (no sharing)
- e.g. link bandwidth, switch capacity
- circuit-like (guaranteed) performance
- call setup needed
- resources not used by call are idle

How to create such circuits?

- Network logically divided into pieces

Circuit switching: FDM and TDM

FDM: Frequency Division Multiplexing

Example:
4 users
$\square \square \square \square$

TDM: Time Division Multiplexing

Packet switching

Each end-to-end data stream divided into packets

- packets share network resources
- each packet uses full link bandwidth
- prevents idle time
- resources used as needed (no reservations)

Resource contention:

- bandwidth demand can exceed amount available (congestion): too many packets
- store and forward: packets move one hop at a time
- Node receives complete packet before forwarding

Packet switching: Statistical multiplexing

Sequence of A \& B packets does not have fixed pattern, bandwidth shared on demand \rightarrow statistical multiplexing.

Packet switching: Store-and-forward

Example:

- takes L/R seconds to transmit (push out) packet of L bits on to link at R bps
- store and forward: entire packet must arrive at router before it can be transmitted on next link
- delay $=3 \mathrm{~L} / \mathrm{R}$ (assuming zero propagation delay)
- $L=7.5$ Mbits
- $R=1.5 \mathrm{Mbps}$
- transmission delay $=15 \mathrm{sec}$

Packet switching vs. circuit switching

Packet switching allows more users to use the network!

Example:

- $1 \mathrm{Mb} / \mathrm{s}$ link
- Each user:
- $100 \mathrm{~kb} / \mathrm{s}$ when "active"
- active 10% of time

HOW MANY users can be supported?

Packet switching vs. circuit switching

Packet switching allows more users to use the network!
Example:

- $1 \mathrm{Mb} / \mathrm{s}$ link
- Each user:
- $100 \mathrm{~kb} / \mathrm{s}$ when "active"
- active 10% of time
- circuit-switching: 10 users
- packet switching:
with 35 users, probability > 10 active at same time is less than . 0004

Exercise: How did we get value 0.0004?

Packet switching vs. circuit switching

Is packet switching a "winner?"

- great for bursty data
- efficiency in resource sharing
- no call setup required
- congestion: causes packet delay and loss
- protocols needed for reliable data transfer, congestion control
- Q: How to provide resource guarantees (circuit-like behavior)?
- bandwidth guarantees needed for audio/video apps
- still an unsolved problem (more later)

Internet structure: Network of networks

- roughly hierarchical
- at center: "tier-1" ISPs (e.g., Verizon, Sprint, AT\&T), national/international coverage
- treat each other as equals

```
Tier-1
providers
interconnect
(peer)
privately
```


Internet structure: Network of networks

- "Tier-2" ISPs: smaller (often regional) ISPs
- Connect to one or more tier-1 ISPs, possibly other tier-2 ISPs

Internet structure: Network of networks

- "Tier-3" ISPs and local ISPs
- last hop ("access") network (closest to end systems)

Internet structure: Network of networks

A packet passes through many networks!

